Thermal imaging of nanostructures by quantitative optical phase analysis.

نویسندگان

  • Guillaume Baffou
  • Pierre Bon
  • Julien Savatier
  • Julien Polleux
  • Min Zhu
  • Marine Merlin
  • Hervé Rigneault
  • Serge Monneret
چکیده

We introduce an optical microscopy technique aimed at characterizing the heat generation arising from nanostructures, in a comprehensive and quantitative manner. Namely, the technique permits (i) mapping the temperature distribution around the source of heat, (ii) mapping the heat power density delivered by the source, and (iii) retrieving the absolute absorption cross section of light-absorbing structures. The technique is based on the measure of the thermal-induced refractive index variation of the medium surrounding the source of heat. The measurement is achieved using an association of a regular CCD camera along with a modified Hartmann diffraction grating. Such a simple association makes this technique straightforward to implement on any conventional microscope with its native broadband illumination conditions. We illustrate this technique on gold nanoparticles illuminated at their plasmonic resonance. The spatial resolution of this technique is diffraction limited, and temperature variations weaker than 1 K can be detected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Annealing Temperature on the Structural, Magnetic and Optical Properties of SrCo2Fe16O27 Hexaferrite Nanostructure

In this paper, W-type SrCo2Fe16O27 hexaferrite nanostructures were synthesized by sol-gel auto-combustion method. Effect of annealing temperature on the structural, magnetic and optical properties of these SrCo2Fe16O27 nanostructures was investigated. In order to determine the annealing temperature of samples, the prepared gel was examined by thermo-gravimetric and differential-thermal analyses...

متن کامل

Structural, Magnetic and Photocatalytic Properties of BiFeO3 Nanoparticles

Single phase BiFeO3 (BFO) nanoparticles as a visible light photocatalyst were successfully synthesized by thermal decomposition of the glyoxylate precursor. The glyoxylate precursors were formed by the redox reaction between ethylene glycol and nitrate ions. The phase evolution, structure and optical properties of BFO nanoparticles were characterized by X-ray diffraction, electron microscopy an...

متن کامل

Synthesis and characterization of CdO/GrO nanolayer for in vivo imaging

Objective(s): Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity. Nanoparticles have enabled significant advances in pre-clinical cancer research as drug delivery vectors. Inorganic nanoparticles such as CdO/GrO nanoparticles have novel optical properties that can be used to optimize the signal-to-background ratio. This paper rep...

متن کامل

Thermal Annealing Influence over Optical Properties of Thermally Evaporated SnS/CdS Bilayer Thin Films

Thin films of tin sulfide/cadmium sulfide (SnS/CdS) were prepared bythermal evaporation method at room temperature on a glass substrate and then annealedat different temperature with the aim of optimizing the optical properties of the materialfor use in photovoltaic solar cell devices. The effect of annealing on optical propertiesof SnS/CdS film was studied in the temper...

متن کامل

Structural, optical, thermal and Photocatalytic properties of ZnO nanoparticles of Betel Leave by using Green synthesis method

In this present study reports the green synthesis of zinc oxide nanoparticles using Betel leaf extracts and zinc acetate. The functionalization of ZnO particles through Betel leaf extract mediated bio reduction of ZnO was investigated through X-ray diffraction, Field emission scanning electron microscopy, photoluminescence, thermal gravimetric-differential thermal analysis, hexagonal shaped ZnO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 2012